
Abschlussprüfung 1999 - Aufgabengruppe II

In einem Park wird ein rechteckiges Blumenbeet angelegt (siehe Skizze). Der Weg um das Beet hat gleichbleibende Breite und beansprucht eine Fläche von 205,4 m².

- a) Berechnen Sie die Breite des Weges
- b) In der Mitte des Beetes befindet sich ein kreisförmiger Springbrunnen. Seine Fläche nimmt 1 % der Beetfläche ein. Welches Volumen hat der Springbrunnen, wenn er die Form einer Halbkugel hat?

Hinweis: Runden Sie alle Ergebnisse, auch Zwischenergebnisse auf eine Dezimalstelle.

x ²	50 · x	x ²
39,2 · x		39,2 · x
x ²	50 · x	x ²

Lösungsschema: Zerlegen des Weges in Rechtecke und Quadrate.

Gleichungsansatz: Addieren der Teilflächen

$$50x \cdot 2 + 39,2 \cdot x \cdot 2 + 4x^{2} = 205,4$$

 $178,4x + 4x^{2} = 205,4$ / - 205,4
 $4x^{2} + 178,4x - 205,4 = 0$ / : 4
 $x^{2} + 44,6 - 51,35 = 0$

Formel:

$$x_{1/2} = -p \pm \sqrt{p^2 - q}$$

$$x_{1/2} = -22.3 \pm \sqrt{22.3^2 + 51.35}$$

$$x_{1/2} = -22.3 \pm 23.4$$

$$\underline{x_1} = -45.7 \text{ (keine sinnvolle Lösung)}$$

$$\underline{x_2} = 1.1$$

Antwort:

Der Weg ist 1,1 m breit.

Volumen des Springbrunnens

Beetfläche: $A = 50 \cdot 39,2$ $A = 1960 \text{ m}^2$ Brunnenfläche: $A = 1 \% \cdot 1960$ $A = 19,6 \text{ m}^2$

Radius Brunnen:

$$A = r^2 \cdot \pi$$

19,6 = $r^2 \cdot 3,14$ /: 3,14
6,2 = r^2
 $r = 2,5 \text{ m}$

Volumen Brunnen:

$$V = \frac{4}{3} \cdot r^3 \cdot \pi : 2$$

 $V = \frac{4}{3} \cdot 2,5^3 \cdot 3,14 : 2$

Der Brunnen hat ein Volumen von 32,7 m³.